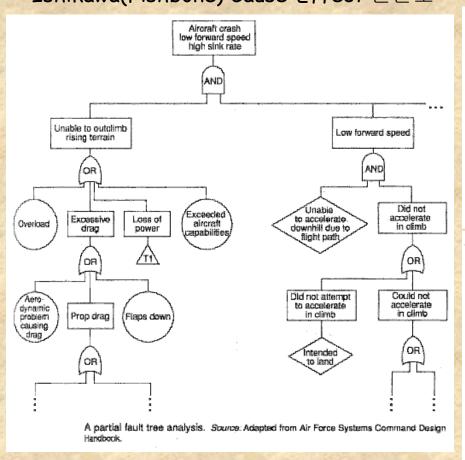
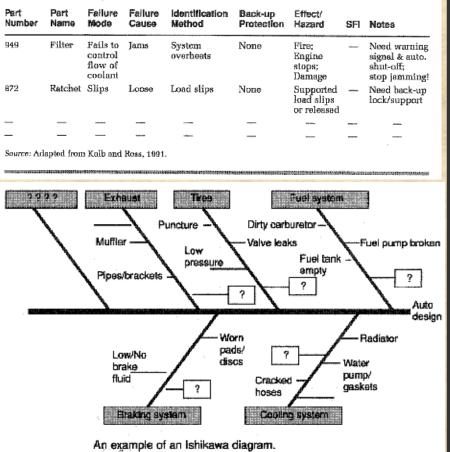
Chapter 7

The Design Specification

Creative Engineering Design


Page 7-1


Customer Needs vs. Design Specifications

- •고객의 요구조건 소비자들, 또는 사회적인 용어로서의 막연한 바램
- •설계사양 고객의 요구사항을 공학적인 용어로 정의 설계변수(design parameters)들로 구체화 됨 설계사양 = 지배변수(설계변수) + 구속조건(설계기준)
- •품질기능전개(QFD, Quality Function Deployment) 고객요구조건과 설계변수의 상관관계행렬 제품설계 및 제조에서 항상 고객을 의식하고자 노력 동시공학을 적용한 전사적 품질관리의 일환
- •J.F. Kennedy의 요구사항 1961년 당시 향후 10년 내에 유인 우주왕복선 달성 !

Hazard(사고유발원인) 규명 ⇒ 안전도/사고의 심각도 분석

FTA(Fault Tree Analysis) ~ top-down 방식
FMEA(Failure Mode and Effects Analysis) ~ bottom-up 방식
Ishikawa(Fishbone) Cause-Effect 진단도

Portion of an FMEA sheet

QFD

·Some generic design parameters

Function/performance Product cost Delivery date Quantity Environmental issues Safety Quality

Energy consumption Reliability Maintenance Mechanical loading

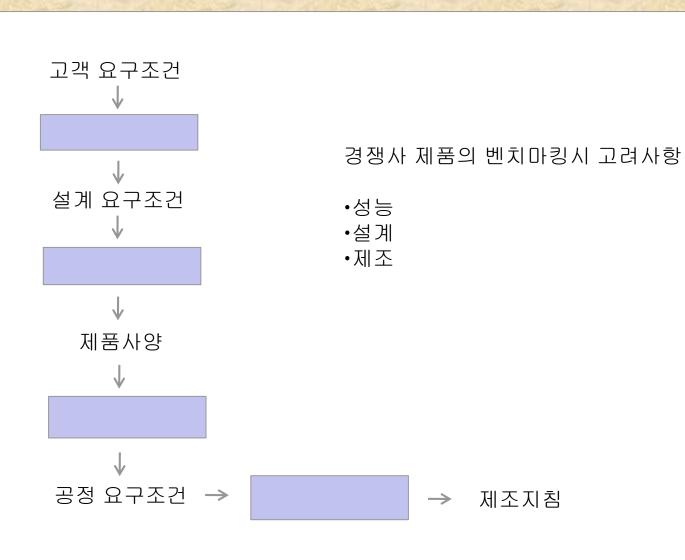
Size Weight

Spatial constraints Aesthetics Transportation & packaging Personnel Service life Noise radiation Operating instructions Human factors Health issues Government regulations Shelf-life storage Operating costs Environmental conditions

Design parameters

Sustomer requirements

Strength of the relationship between customer requirement and design parameter


S-strong A-average W-weak

Customer importance (numerical scale) 3-essential 2-highly desirable

1-desirable

0-almost irrelevant

❖ 품질기능전개의 필수적인 요소

Design Specification - The Hierarchy

Design parameters flowdown

- •전체시스템의 성능을 정의하는 변수
- •주조립품에 관계되는 변수
- •부조립품에 관계되는 변수
- •개별부품에 관계되는 변수

Automobile

전체 제원 대한 설계		
]
]]
		ile.

Creative Engineering Design

Page 7-6

Generic Design Parameters

- Maintenance
- nce Weight
- Quantity

- Size

- Environment

- Delivery date

- Service

- Noise

- Cost

- Safety

- Government regulations
- Aesthetics
- Domain of acceptable solution

Function and performance

•기능: 1차적 기능 + 2차적 기능

•성능 : 공학적 용어로 정의하고 정량화

•제품비용과의 상관관계가 중요함.

Product cost

- ·Benchmarking에 의한 가격예측 목표설정 및 유도
- •개념설계에서는 불확실 제품설계 후 현실적 원가 예측가능
- •CE 전략은 제품비용을 줄여준다.
- •재질의 선택, 공차/표면마무리, 공정에 따른 원가의 분석 이 때 보통 경험칙(rule of thumb) 지침을 활용함
- ·Make items 사내 생산설비, 자재, 공구, 임금 등을 고려
- •Buy items 반드시 기능/성능에 시험이 필요. 외주비용 및 납기

Delivery date

- ·First article 납품일자 설계 및 제조방식에 영향
- ·짧은 lead time의 경우 주.단조 보다는 용접이나 기계가공이 유리
- ·Gantt 또는 PERT 활용

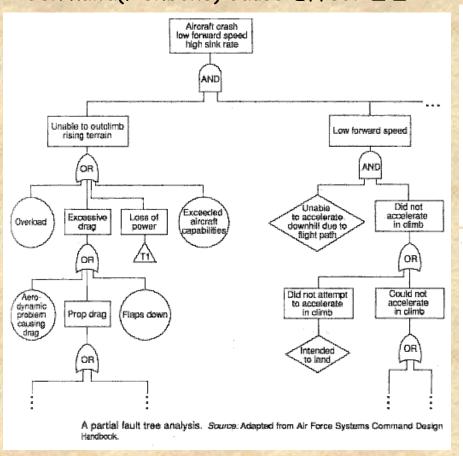
Quantity

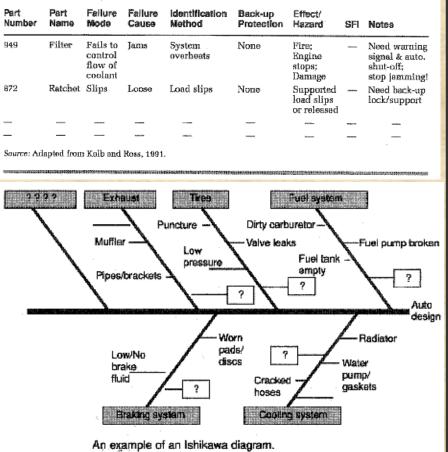
- ·Batch size 생산방식에 영향 공정의 선택에 영향 설계도에 영향
- •원가 소량생산:기계가공이 저렴하나 대량생산:주조/단조 저렴
- ·고정비 vs. 변동비

Environmental issues

•제 6장에서 상세히 다루었다.

Safety


- •대부분의 사고(accident)가 제품의 결함으로 부터 기인하는 것이 아니라 제품을 잘못 사용하는 것에 기인한다.
- •제품주변의 인간의 건강, 자산, 시설을 보호하는 것
- •안전고려설계는 위험(hazard)을 확인하는 작업에서 부터 시작된다.
- •사고의 원인 = 사람 + 기계 + 환경
- •failure(파손) ~ 제품의 고장, 파괴, 오작동
- ·risk(위험) ~ 사고/손실(loss) 유발 가능성
- ·hazard(위험) ~ 사고의 유발 원인
- •hazard를 확인한 후 이들의 발생확률, 심각도 등의 분석과 이를 제거하기 위한 방법 등을 강구하여야 한다.


※EPA: Environmental Protection Agency (미연방환경보호청)

OSHA: Occupational Safety and Health Administration(작업안전 및 보건청)

Hazard(사고유발원인) 규명 ⇒ 안전도/사고의 심각도 분석

FTA(Fault Tree Analysis) ~ top-down 방식
FMEA(Failure Mode and Effects Analysis) ~ bottom-up 방식
Ishikawa(Fishbone) Cause-Effect 진단도

Portion of an FMEA sheet

Hazard를 제거하기 위한 방법

- a) 설계개념을 달리하므로써 hazard 완전히 제거 : 많은 비용 유발
- b) 사용자를 harzard로부터 격리시키도록 보호장치 혹은 센서시스템 장착
- c) hazard에 대한 안전조작 지침을 주고 경고 신호 설치.
- d) 한쪽이 fail 했더라도 그것을 대신해 줄 수 있는 secondary 장치 설치 (fail-safe 개념)
- ※ 보통 안전설계를 위한 check list를 활용함(표7.2)
- 예) motor cyclist의 helmet, 안전벨트, 에어백, 항공기의 해양부유 뗏목, 공항의 소방시설...

Quality

- •제품의 정해지거나 함축된 요구사항을 만족시키는 능력을 제공하는 모든 특징과 특성 (BS 4891)
- •고객이 수용할 만한 가격으로 고객요구조건을 만족시키는 제품의 능력
- •제품이 고객에게 납품된 이후에 제품에 의해 야기되는 사회적 손실정도 (Taguchi)
- •체계적 품질개선을 위해서 다구치기법이 자주 이용된다.

그림 7.7 일반적인 품질손실함수

	•Taguchi Method : Robust design -System level (시스템설계) -Parameter level (변수설계) -Tolerance level (공차설계)		
	오프라인 품질관리		
그림 7.8 저장된 공차와 비교되는 제품표본분포			
Creative Engineering Design	Page 7-14		

*	품질특성에 대한 변수변동의 결과
	제품저하

Energy consumption

- •에너지소모의 원인을 제거
- •에너지손실의 원인을 제거
- •제품의 효율

Reliability

제품의 신뢰성은 제품이 정해진 운전 조건하에서 의도된 기능을 수행할 확률로써 정의한다.

- •신뢰도: 제품이 정해진 운전조건하에서 의도된 기능을 수행할 확률
- •제품의 품질 및 유지보수와 밀접한 연관
- •일반적으로 신뢰도 변수를 높이면 비용상승, 사용수명이 단축된다.
- •신뢰도기준 : 표준 및 법규에서 규정되고 있음

Maintenance protocols

- •제품이 주어진 설계사양대로 지속적으로 기능을 발휘하기 위해 행해져야 하는 것들
- •사용수명이 길고 초기구입비보다 유지비가 더 많이 드는 제품에서 중요
- •유지보수의 주체
 - -고객
 - -제조자
 - -독립된 업체
- •유지보수 형태
 - -고장점검
 - -고장수리
 - -일상적 유지보수 : 기능점검
- •유지보수 매뉴얼: 설계자가 작성 (유지보수고려설계 표 7.4)

Size

Weight

Aesthetics

- •심미성 요소 : 시각적 매력, 표면조직, 색채, 냄새
- •주관적이고 정성적 설계변수 : 연령층, 문화권, 사회적 계층에 따라 다르다.
- ·Mercedes Benz, Rolex etc

Ambient environmental conditions

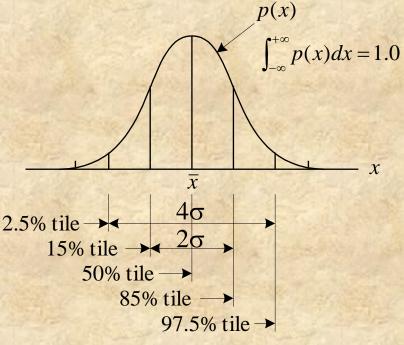
•온도, 습도, 화학물질, 미립자, 박테리아, 방사선

Packaging and Transportation

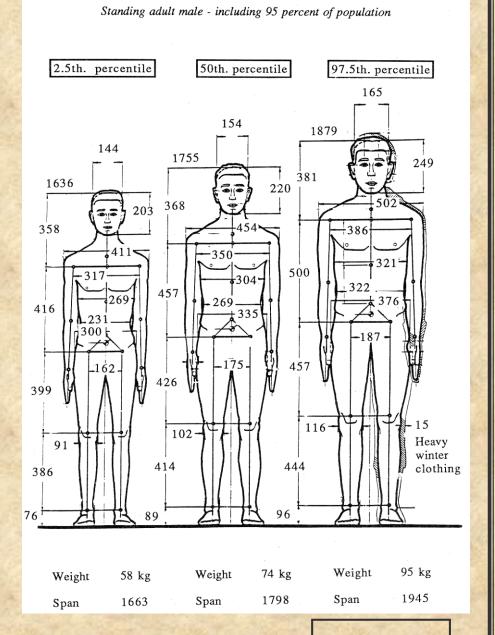
•창고의 환경

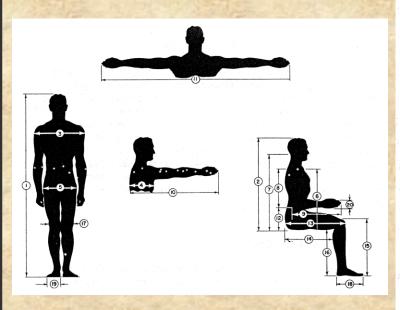
•포장: 저장 및 운송을 위한

•취급:주의문


•운송 : 분해/조립, 종이/플라스틱, 나무, 특수 운송 치공구

Human factors Ergonomics


- Acquire data by operator
- •시스템 = 운전자/사용자 + 기계/제품 사이의 상호작용에 관한 것
- •작업자의 요구조건과 역량에 맞게 장치,시스템,육체적 작업조건을 설계하도록 돕는 응용과학
- •관련자료
 - -SAE J833
 - -NASA STD 3000
 - -MIL-HDBK-759A


인체측정학(anthropometry)

Normal or Gaussian 분포

percentile @ $x_1 = 100 \times \int_{-\infty}^{x_1} p(x) dx$

Body variable	М	Male		Female	
	Me- dian	Range	Mean	Range	
1 Height	69.2	61.4-78.0	63.2	55.0-73.0¶	
2 Sitting height: erect‡	36.4	32.7-40.6	34.1	30.7-34.4	
3 Shoulder breadth	18.0	15.4-20.5	13.4	8.7-19.3	
4 Chest depth	8.2	6.3-11.0			
5 Seat breadth: standing	14.0	11.8-18.5	15.0	11.8–18.9	
5 Hip breadth: seated	15.3	12.0-21.3	14.6	12.1-20.6	
6 Trunk height	23.8	19.7-27.2	24.6	Not given	
7 Back height	28.6	23.6-33.1	26.7	21.1-30.1	
8 Shoulder-elbow	14.7	10.6-16.9	13.3	Not given	
9 Forearm	18.8	15.8-22.1			
10 Forward arm reach	35.2	29.5-40.6	31 8	28.3-35.4	
11 Total arm span	71.5	62.2-80.7			
12 Elbow height	9.6	6.7-12.0	9.7	7.0-12.0	
13 Buttock-knee	23.6	19.3-27.6	22.6	19.7-26.7	
14 Seat length	18.9	15.4-23.1	18.2	15.2-22.2	
15 Knee height	22.0	18.1-25.6	17.2	Not given	
16 Seat height	19.0	15.6-22.0	18.1	15.4-20.6	
17 Knee breadth	8.1	6.7-11.0			
18 Foot length	10.4	8.3-12.2	9.6	8.9-10.9	
19 Foot breadth	4.0	3.4-4.8			
20 Hand breadth	3.5	3.0-4.0			

Body dimensions for adults.

공학시스템내의 인간적 요소

1) 작업공간의 차지

비상탈출구나 출입문 설계 - 95th percentile man을 기초 조종석 설계 - 2.5th percentile man이 접근할 수 있도록 여객기의 부엌(galley)- 50th percentile로 설계하고 해당 승무원 배치함.

※ 인체측정학 자료는 시대에 따라 바뀌고 있음.

2) 에너지원

사람의 maximum continuous output ~ 대략 250 watts 설계치: 온종일 안정적 일할 수 있는 power는 위 값의 50% 이내로 정함(rule of thumb)

3) 감지(sensor) 혹은 변환(transducer)

검출(detector) - 조립작업, 가공 및 프레스 작업 등.

분명한 자극이 있음.

에러는 주로 과부하(overload)에 의해 유발됨

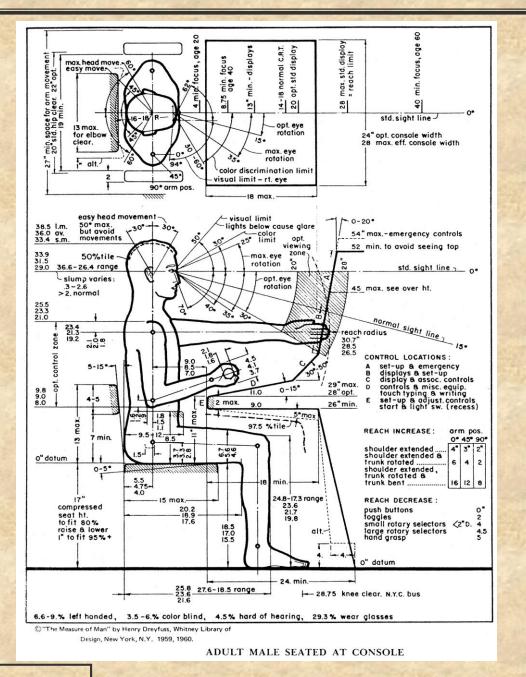
감시(monitor) - 생산품의 검사, 발전소/플랜트 통제실, 레이다 감시등 단순하고 자극이 약함, 불침번 에러는 주로 저부하(underload)에 의해 유발됨

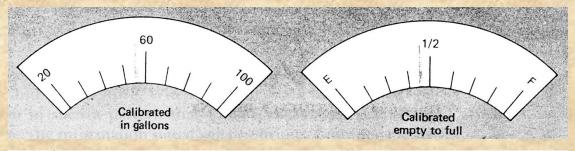
4) 정보의 처리

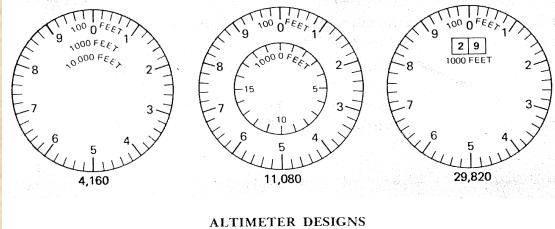
USAF의 계기 및 신호의 대응시 자주 일어나는 에러에 관한 연구

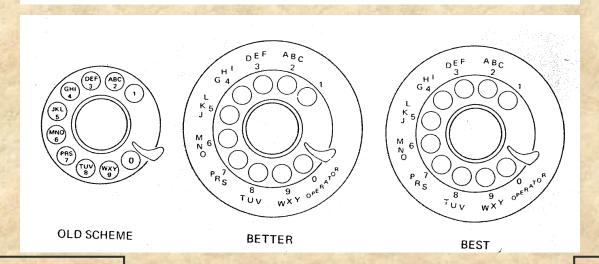
18% - multipointer 계기를 잘못 읽음(고도계)

17% - 지시침의 움직임의 방향을 잘못 인식함

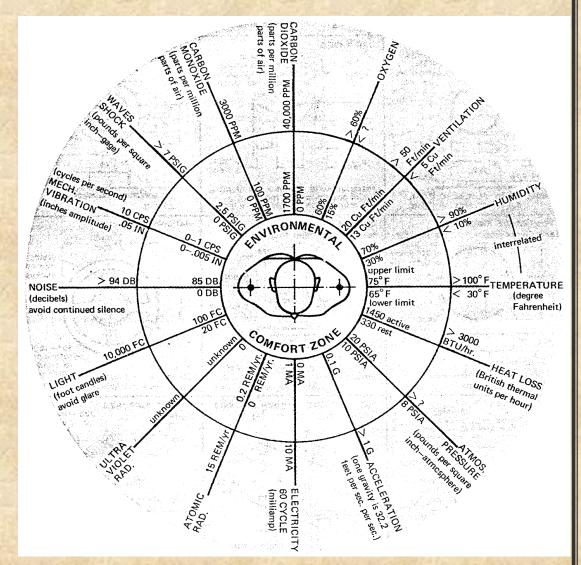

14% - 경고등과 경고음에 반응을 못함


14% - 순전히 계기의 판독성이 나쁘기 때문


이러한 실수는 상세한 설계변경에 의해 크게 줄일수 있다!


5) 추적(tracker)과 조정(controller)

인간의 조정능력은 제한된 범위에서 안정하다.



Noise

- •가청주파수 : 20 Hz ~ 20,000 Hz
- •140 dB-통증유발
- ·85 dB 지속적 노출
- -영구적 청각손실
- · Comfort
- ·Bearable
- ·Possible damage

Service life

- •설계사양대로 정상조건하에 운전되는 제품의 수명
- •부품별로 수명이 다름: 먼저 교체되어야 할 것(유지보수 매뉴얼에 나와 있음)

Governmental Regulations

- •제품은 그것이 판매되는 나라의 정부규정을 따라야 한다.
- •미국의 자동차 주별로 연료절약 및 배기가스 규제가 다르다.

Operating costs

- •제품의 수명주기비용 = 초기 구입비 + 운전비용 + 폐기비용
- •운전비용: 에너지소비(연료/전기비), 신뢰성, 유지보수, 사용수명, 간접비